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Abstract

Universal connections between the overall moduli of elastic ®brous composites are explored. For any medium

that can be represented by certain characterization functions, we show that its e�ective modulus tensors follow

similar constraints as those for Hill's connections for a two-phase ®brous composite. Some new standpoints are

proposed, which reveal that the connections remain valid for media containing cavities or rigid inclusions. In

addition, connections are devised to accomodate the case in which the composite consists of phases with identical

eigenmoduli. We show that, in this particular case, it often provides additional constraints to the overall moduli of

the composite. Speci®c results are given in analytic forms for two-phase ®brous composites with transversely

isotropic phases, and with square-symmetric phases. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In many physical problems it is permissible to set certain ®elds to be constant throughout a

heterogeneous medium. This may be due to physical considerations or to geometrical arrangements. For

instance, in a cylindrical body a constant axial strain or electric ®eld may be prescribed or induced. In

addition, in thermo-elastostatics one may assume that a uniform temperature change prevails in a solid.

Quite a few exact theorems of composites are indeed a consequence of the existence of such constant

®elds. For example, Hill (1964) found that the overall elastic moduli of two-phase ®brous composites

are connected by universal relations which are independent of the geometry at a given volume fraction.

Levin (1967) showed that the e�ective mechanical properties and thermal expansion coe�cient are
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related in an exact manner. Rosen and Hashin (1970) derived a relation between the speci®c heat and

thermo-mechanical moduli. All these theorems are microstructure independent and provide theoretical

linkages among the overall moduli of the composite. The results were originally presented in terms of

isotropic or transversely isotropic elasticity, where explicit formulae can be found. In a series of works,

Dvorak (1986, 1990) showed that, in the presence of a certain constant ®eld, it is possible to generate

uniform ®elds throughout the medium by a particular set of loadings. With this concept, much progress

has been made in ®nding the connections between the moduli of composites with arbitrary anisotropy or

with other physical context, such as piezoelectricity (see for example, Benveniste and Dvorak, 1992 and

references cited therein). Recently, Chen (1998) showed that, upon a rearrangement of moduli, all the

aforementioned connections are mathematically equivalent to each other and can be treated in a uni®ed

manner. However, the uniform ®eld approach is not without limitation and the applicability of the

connections may not seem readily apparent from the existing presentations. In fact, there are quite a few

theoretically interesting situations in which the uniform ®eld method may exhibit di�culty or even break

down, for instance in porous media or in composites with identical bulk or shear moduli. This work

proposes some new standpoints to these issues and intends to provide a solution to resolve the gap.

The formulation will focus exclusively on elastic cylindrical aggregates, which are su�cient to generate

results in many di�erent contexts, including thermal e�ects, humidity, electric ®elds, etc. Speci®cally,

Section 2 attempts to show that the e�ective modulus tensors of a medium, that can be represented by

certain characterization functions, follow similar forms of the universal connections for a two-phase

®brous composite. Particularly, the characterized material may even vary in space. The derivations are

rather straightforward without invoking the uniform-®eld approach. Section 3 examines the situations in

which a certain matrix is not invertible, which corresponds to the cases that uniform ®elds cannot be

constructed throughout the body, in the way originally conceived. Interestingly, we observe that in this

particular situation uniform ®elds can in fact always be constructed and that, in many situations,

additional constraints to the overall moduli are thereby obtained. To our knowledge, this feature has

not been noticed in any of the literature before. Two speci®c examples for two-phase composites, one

for transversely isotropic phases and the other for square-symmetric phases, are worked out in detail.

Exact connections between the overall moduli are given in analytic forms. Section 5 presents a general

framework for the subject, which is suitable for di�erent physical contexts. Central to the concept is the

existence of certain constant quantities, e.g. temperature, axial strain, etc. Finally, some closing remarks

are made in Section 6.

2. Universal connections of overall moduli

To illustrate the main concept of the framework, we shall focus on purely elastic behavior of ®brous

composites. The concept will be su�cient to extend to other physical contexts, such as piezoelectricity,

thermal e�ects, etc. On a ®xed Cartesian coordinate system fxi g, the constitutive equations for an elastic

solid are given by sij � Lijklekl or eij � Sijklskl. In matrix notation, they can be expressed as sss � Leee or

eee � Ssss, where sss and eee are de®ned by

s1 � s11, s2 � s22, s3 � s33, s4 � s23, s5 � s31, s6 � s12,

e1 � e11, e2 � e22, e3 � e33, e4 � 2e23, e5 � 2e31, e6 � 2e12: �1�

Suppose the axial direction is chosen as parallel to the x3-axis. Then the usual Hooke's law can be

rearranged as
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"
Ãeee

ÿs3

#
�
"

^S a

aT ÿE3

#"
Ãsss

e03

#
,

"
Ãsss

s3

#
�
"

^L b

bT l33

#"
Ãeee

e03

#
, �2�

where

ŝss � �s1, s2, s4, s5, s6 �T, êee � �e1, e2, e4, e5, e6 �T,
a � �s13, s23, s34, s35, s36 �T=s33, b � �l13, l23, l34, l35, l36 �T,ÿ
ÃL
�
ij � lij,

ÿ
ÃS
�
ij � sij ÿ si3sj3=s33, �i, j � 1, 2, 4, 5, 6�, �3�

E3 is the Young's modulus in the x3-direction, and sij and lij are the usual two-index compliance and

sti�ness, respectively. The superscript `T' denotes the matrix transpose. The ®eld quantities must satisfy

the equilibrium equations and compatibility conditions. Along any interfaces of di�erent materials,

perfect bonding is assumed. For brevity, in the sequel, the formulation is derived based on (2)1. The

dual approach via the moduli is obtained simply by letting ^L$ ^S, ^b$ â, l33 $ÿ E3. In the sequel,

`phase', as the usual interpretation, is de®ned as a region with constant moduli; `a pointwise varying

material' means a material which has moduli depending on positions.

Let us now consider a heterogeneous medium consisting of cylindrical phases with arbitrary transverse

geometry. Suppose that the properties of the medium can be represented by the forms

^S�x1, x2� � ^Sa �
�

^Sb ÿ ^Sa

�
F�x1, x2 �,

a�x1, x2� � aa � FT�x1, x2��ab ÿ aa�,

E3�x1, x2� � E a
3 �

�
E

b
3 ÿ E a

3

�
f�x1, x2�, �4�

in which f ^Si, ai, E i
3g, i � a, b, are two set of constant properties. F�x1, x2� and f �x1,z2� are certain

functions of position restricted by the requirements that the compliances be symmetric and non-

negative. The objective of this section is to show that the e�ective moduli of the considered medium will

follow the universal connections as those for a two-phase ®brous composite.

Equation (4) depicts a wide class of heterogeneous media. For example, for any two-phase medium

consisting of phases 1 and 2, the properties of the medium can be characterized by selecting ^Sa � ^S1,
^Sb � ^S2, E

a
3 � E1

3, E
b
3 � E2

3 so that F�x� and f�x� follow

F�x� �
(
0 for: x 2 O1

I for: x 2 O2

, f�x� �
(
0 for: x 2 O1

1 for: x 2 O2

, �5�

and aa � a1, ab � a2, where I is the 5� 5 unit matrix and, O1 and O2 denote the domains of phases 1

and 2, respectively. Of course, this representation is not a unique choice. In particular, for any given

two-phase medium one can always select ^Sa, ^Sb, E
a
3 and E

b
3 at will, while ai, Fi and fi are restricted by

some relations. In other words, there are a number of ways to represent the elastic properties of a two-

phase medium via (4). A notable feature of (4) is that it is capable of modeling a speci®c class of

inhomogeneous materials. Particularly, the characterized material properties may even vary in space

since F and f are functions of position. We note, however, that for an arbitrary three- or multi-phase

medium it is not always possible to characterize the material properties via (4), since ^S and a are linked

by F. But for a three-phase material in which the third phase is itself a composite of the ®rst two

materials, it is indeed possible to characterize the medium by (4). Lastly, it can be veri®ed that if

� ^S2 ÿ ^S1� is singular so is �F2 ÿ F1�, since one can choose � ^Sb ÿ ^Sa� arbitrarily. The same reasoning also
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applies to E3. Eqn (4) also implies that aa and ab cannot be uniquely determined if � ^S2 ÿ ^S1� is not

invertible.

Suppose, under a uniform loading, the macroscopic behavior of the medium can be e�ectively

represented by the same constitutive relation (2) with certain suitably chosen overall moduli ^S
�
, a� and

E �
3. Then the average ®elds satisfy" hêeei

ÿhs3i

#
�
2
4 ^S

�
a�

a�T ÿE�
3

3
5" hŝssi

e03

#
, �6�

where the argument inside h i means the volume averages over the representative volume element (RVE).

By taking the average of (2) and comparing with (6) it follows that

D ^S
�hŝssi � Da�e03 � D ^ShFŝssi �



FT
�
Dae03,

Da�Thŝssi ÿ DE �
3e

0
3 � DaThFŝssi ÿ DE3



f
�
e03, �7�

where

D ^S
� � ^S

� ÿ ^Sa, Da� � a� ÿ aa, DE�
3 � E�

3 ÿ Ea
3,

D ^S � ^Sb ÿ ^Sa, Da � ab ÿ aa, DE3 � E
b
3 ÿ Ea

3: �8�

Since hŝssi and e03 can be prescribed arbitrarily, by letting e03 � 0, relations (9) provide

Da� � D ^S
�
D ^S

ÿ1
Da, �9�

while, letting hŝssi � 0, they lead to

ÿ�DE�
3 ÿ



f
�
DE3

� � DaTD ^S
ÿ1�

Da� ÿ


FT
�
Da

�
: �10�

Eqns (9) and (10) provide at most six constraints to the overall properties of the non-homogeneous

medium, which means that the six material constants relevant to the axial direction of the cylindrical

aggregate can be solely determined by the remaining 15 o�-axial material constants. In particular, the

connection (9) suggests that the overall moduli of a family of heterogeneous materials are governed by

the same constraints as that for a typical two-phase ®brous composite. In addition, the relationship (9)

is independent of volume concentrations of the constituents. The functions F and f, which are relevant

to the volume concentrations of the phases, only take e�ect in one connection (10).

For the usual two-phase composite (5), it follows that hFi � c2I and h f i � c2, where c2 denotes the

volume fraction of phase 2. Eqns (9) and (10) are recast as

�a� ÿ a1� �
ÿ
^S
� ÿ ^S1

�ÿ
^S2 ÿ ^S1

�ÿ1�a2 ÿ a1�,

ÿ
ÿ
E�
3 ÿ c1E

1
3 ÿ c2E

2
3

�
� �a2 ÿ a1�T

ÿ
^S2 ÿ ^S1

�ÿ1�a� ÿ c1a1 ÿ c2a2�, �11�

which are exactly the results of Chen [1998, eqns (27)1 and (28)1] derived from the uniform-®eld

approach. The present formulation does not invoke the concept of uniform ®elds and yet the scope is

somewhat broader than that of the previous works. For example, the present approach justi®es the

validity of the connections for media containing cavities or rigid inclusions, and for a few classes of

pointwise varying materials, in which uniform ®elds may not be generated. We note, however, that for a

general three- or more-phase material, no such connections (9) and (10), can be found by either
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approach. As noted earlier by Chen (1998), the connections are formally identical with Levin's (1967)

relation, Rosen and Hashin's (1970) connection between the e�ective thermal properties and overall

mechanical properties, and with the restrictions of the overall electrical±mechanical coupling behavior,

etc. Thus, by proper interpretations of the de®nitions in (9) and (10), the results also apply to the

constraints of overall moduli of various physical phenomena.

Before closing this section, we ask whether the choices of ^S will a�ect the results (9) and (10)? In

other words, if two sets of ^Sa, ^Sb, E
a
3, E

b
3, �aa, ab, F� represent the same con®gurations of a medium, will

the connections obtained remain the same? The answer is yes. To prove this, we start from (9).

Referring to (9) and (8), it is seen that

a� �
�
aa ÿ ^SaD ^S

ÿ1
Da

�
� ^S

�ÿ
^S2 ÿ ^S1

�ÿ1
�a2 ÿ a1 � �12�

� a1 ÿ ^S1
ÿ
^S2 ÿ ^S1

�ÿ1�a2 ÿ a1� � ^S
�ÿ

^S2 ÿ ^S1
�ÿ1�a2 ÿ a1�: �13�

Similarly, since hFTiDa � ha�x�i ÿ aa and h f iDE3 � hE3�x�i ÿ E a
3, it turns out that (10) can be recast as

ÿÿE�
3 ÿ



E3�x�

�� � DaTD ^S
ÿ1ÿ

a� ÿ 

a�x���: �14�

Obviously, (9) and (10) are independent of the choices of ^Sa and ^Sb.

3. Universal connections when D ^S is singular

Returning to the connections (11) for a two-phase ®brous composite, it is essential that � ^S2 ÿ ^S1� be
invertible. As mentioned before, eqn (4) also implies that aa and ab cannot be uniquely determined if

� ^S2 ÿ ^S1� is not invertible. Thus, the previous results (9) and (10), are not applicable when � ^S2 ÿ ^S1� is
singular. Although it rarely occurs in practice that this matrix is singular, there are quite a few

theoretically interesting outcomes resulting from this coincidence, for example in two-phase isotropic

media with equal shear rigidities or equal bulk moduli. In this section we intend to prove that, with the

concept of uniform ®elds, quite a few connections between the overall moduli can still be established.

For simplicity, let us focus on two-phase ®brous composites. The phase properties and overall moduli

are written by (2) and (6), with indices i � 1, 2 and �, respectively. Suppose the composite aggregate is

subjected to a uniform stress ŝ together with a certain constant axial strain e03 such that the strain êee is

constant throughout the whole medium, namelyÿ
^S2 ÿ ^S1

�
ŝss� �a2 ÿ a1�e03 � 0: �15�

Since the stress and strain are constant throughout, the equilibrium and compatibility equations are

automatically satis®ed. Now suppose the medium is e�ectively represented by a homogeneous medium

with certain unknown overall moduli. In other words, when the loads ŝss and e03 are applied, the induced

strain will be identical with the pointwise local strain, which means thatÿ
^S� ÿ ^Si

�
ŝss� �a� ÿ ai �e03 � 0, i � 1, 2 �16�

in the transverse direction, and
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"
a�T ÿ

X2
r�1

cra
T
r

#
ŝssÿ

"
E �

3 ÿ
X2
r�1

crE
r
3

#
e03 � 0 �17�

in the axial direction.

Back to (15), since � ^S2 ÿ ^S1� is singular, the rank of � ^S2 ÿ ^S1� must be less than ®ve, say r. The non-

trivial solutions of (15) can be grouped into the following cases:

. when rank �� ^S2 ÿ ^S1� j �a2 ÿ a1�� � r� 1 < 5, there exist �4ÿ r� linearly independent vectors � ~sss je03�T or

�5ÿ r� linearly independent vector � ~sss j0�T;
. when rank �� ^S2 ÿ ^S1�j�a2 ÿ a1�� � 5, only one solution � ~sss j0�T can be found;

. when rank �� ^S2 ÿ ^S1�j�a2 ÿ a1�� � r, then there exist �5ÿ r� linearly independent vectors �ŝssje03�T.

Here, the symbol � ^Sja] denotes the augmented matrix of ^S and a. Note that these non-trivial solutions

are exactly the loads that generate the uniform ®elds throughout the medium. Substituting the

solutions of � ~sss je03�T into the identities (16) and (17) will provide the connections between the overall

moduli for the case that the matrix � ^S2 ÿ ^S1� is singular. It should be noted that, compared to

previous results, for the most general anisotropic composite, the results may provide more than six

constraints, since at least one linearly independent solution can be found. Of course the actual

reduction must be determined for each particular system.

In view of (9) and (10) it seems that the connections may break down when the matrix � ^S2 ÿ ^S1� is
not invertible. However, the present derivations indicate that in this particular situation uniform ®elds

can always be generated under certain loadings, even for a medium which is not a cylindrical aggregate.

In the next section, we shall work out a few speci®c examples for a two-phase ®brous composite.

4. Example

In this section we derive some explicit formulae for the constraints between the overall moduli, in the

case that the matrix � ^S2 ÿ ^S1� is not invertible. To start the formulation, let us introduce the

orthonormal basis

e0 � 1���
2

p
"
1 0

0 1

#
, e1 � 1���

2
p

"
1 0

0 ÿ1

#
, e2 � 1���

2
p

"
0 1

1 0

#
, �18�

in the symmetric second-order tensor space. It is known (Zheng and Hwang, 1996) that the general

anisotropic in-plane compliance can be expressed as

^S � 1

E

"
�1� v�Iÿ v1
 1|�������������{z�������������}

isotropic part

� 1
2
�1
 d� d
 1� � D|������������������{z������������������}

anisotropic part

#
, �19�

where E is the (in-plane) two-dimensional Young's modulus, v is Poisson's ratio in the transverse plane,

I is the fourth-order identity tensor, 1 is the unit second-order tensor, and d� d1e1� d2e2,

D� D1�e1 
 e1ÿ e2 
 e2��D2�e1 
 e2� e2 
 e1�. The ®rst brace in (19) indicates the isotropic part of the

compliance tensor which is invariant to rotations with respect to the x3-axis, while the second brace

represents the anisotropic part of the tensor. In the basis (18) the constitutive equations in (2) can be

written in matrix form as
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2
664
�e1 � e2 �=

���
2

p

�e1 ÿ e2 �=
���
2

p

e6=
���
2

p

3
775 � 1

E

2
664
1ÿ v d1 d2

d1 1� v�D1 D2

d2 D2 1� vÿD1

3
775
2
664
�s1 � s2 �=

���
2

p

�s1 ÿ s2 �=
���
2

p
���
2

p
s6

3
775� e03

2
664
�a1 � a2 �=

���
2

p

�a1 ÿ a2 �=
���
2

p

a6=
���
2

p

3
775, �20�

ÿs3 � �a1 � a2 ����
2

p �s1 � s2 ����
2

p � �a1 ÿ a2 ����
2

p �s1 ÿ s2 ����
2

p � a6���
2

p s6���
2

p ÿ E3e
0
3: �21�

There are four kinds of elastic symmetries corresponding to the in-plane compliance tensor ÃS , namely

full anisotropy, orthotropy, square symmetry and isotropy. Positive de®niteness of the elastic matrix

requires that

det ÃS > 0, 1ÿ v > 0, 1� v�D1 > 0, 1� vÿD1 > 0,

d21 < �1ÿ v��1� v�D1 �, d22 < �1ÿ v��1� vÿD1 �, D2
2 < �1� v�2ÿD2

1: �22�

It is known that for an isotropic solid the area bulk modulus k and the shear modulus m can be

written as k � E=2�1ÿ v�, m � E=2�1� v�. An advantage of the orthonormal basis is that when the axes

are rotated around the x3-axis by an angle of y, the rotated compliance simply follows ÃSy � R ÃSRT, in

which

R �

2
664
1 0 0

0 cos 2y sin 2y

0 ÿsin 2y cos 2y

3
775,

ÃSy � 1

E

2
664
1ÿ v d1 cos 2y� d2 sin 2y ÿd1 sin 2y� d2 cos 2y

1� v�D1 cos 4y�D2 cos 4y ÿD1 sin 4y�D2 cos 4y

sym 1� vÿD1 cos 4yÿD2 cos 4y

3
775, �23�

4.1. Transversely isotropic phases

Let us consider a two-phase ®brous composite in which the constituents are transversely isotropic. In

this case, it is known that d1 � d2 � D1 � D2 � a6 � 0, a1 � a2 � ÿvL, vL being the axial Poisson's

ratio. For convenience, the indices i and m are used to distinguish the phases. For the case that D ÃS is

invertible, Hill (1964) showed that there exist two constraints between the overall properties of the

composite. However, if the matrix � ÃS i ÿ ÃSm� is singular, the validity of the connections needs to be

further examined. To explore this, by demanding � ÃS i ÿ ÃSm� Ãsss � �ai ÿ am�e03 � 0, namely

1

2

2
666666664

1

ki
ÿ 1

km
0 0

0
1

mi
ÿ 1

mm
0

0 0
1

mi
ÿ 1

mm

3
777777775

8>><
>>:

~s1

~s2

~s6

9>>=
>>;ÿ

���
2

p
e03

2
664
vLi ÿ vLm

0

0

3
775 � 0, �24�
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one ®nds a particular loading path that generates uniform ®elds throughout the domain. It is then clear

that the matrix � ÃSi ÿ ÃSm� singular implies ki � km or mi � mm. When the bulk moduli are equal, the null

space of the system is one-dimensional and the only non-trivial solution is �p, 0, 0, 0�T; when the shear

rigidities are equal, the null space becomes two-dimensional and the solutions may be written as

�0, p, q, 0�T or �2
���
2

p
�vLi ÿ vLm��kÿ1i ÿkÿ1m �ÿ1, p, q, 1�T, p, q being some arbitrary constants. Recalling that the

overall properties must be connected by (16) and (17), one ®nds that if ki � km, then

k� � ki � km, vL� � civ
L
i � cmv

L
m; �25�

if mi � mm, then

m� � mi � mm,
vL� ÿ vLm
1

k�
ÿ 1

km

� ÿ4 vL� ÿ civ
L
i ÿ cmv

L
m

E � ÿ ciEi ÿ cmEm

� vLi ÿ vLm
1

ki
ÿ 1

km

: �26�

4.2. Square-symmetric phases

To further illustrate the procedures described in Section 3, we consider a two-phase ®brous medium in

which the phase properties are of square symmetry (Hahn, 1987), namely d1 � d2 � 0 and D2
1 �D2

2 6� 0

in (20). In particular, in the basis (20) the non-zero coe�cients of ÃS are ÃS11 � ŝ11 � ŝ12, ÃS22 � ŝ11 ÿ
ŝ12, ÃS23 � ÃS32 � ŝ16 and ÃS33 � ŝ66=2. It is mentioned that square symmetry is a two-dimensional version

of tetragonal symmetry (Nye, 1985). One of the main di�erences with the transverse isotropy is that the

material principal axes may vary with the phases. For ®xed Cartesian coordinates, on the basis (18), the

phase moduli can be written as

ÃSm � 1

Em

2
664
1ÿ vm 0 0

0 1� vm �Dm
1 Dm

2

0 Dm
2 1� vm ÿDm

1

3
775,

am �
���
2

p
2
664
sm31=s

m
33

0

0

3
775,

ÃS i � 1

Ei

2
664
1ÿ vi 0 0

0 1� vi �Di
1 Di

2

0 Di
2 1� vi ÿDi

1

3
775,

ai �
���
2

p
2
664
si31=s

i
33

0

0

3
775, �27�

and the di�erence of the moduli � ÃS i ÿ ÃSm� follows as
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ÃS i ÿ ÃSm � 1

Em

2
664
a 0 0

0 b� ~D1
~D2

0 ~D2 bÿ ~D1

3
775, �28�

where

a � �1ÿ vi�Zÿ �1ÿ vm�, b � �1� vi �Zÿ �1� vm �,
~D1 � Di

1ZÿDm
1 ,

~D2 � Di
2ZÿDm

2 , Z � Em=Ei: �29�
By the relation (23), it is seen that the matrix can always be diagonalized via a rotation about the

x3-axis by an angle y, which satis®es ~D1 sin 4y � ~D2 cos 4y. As in (15), one can ®nd a particular loading

that generates uniform ®elds in the medium by demanding R� ÃS i ÿ ÃSm�RT
R Ãsss �R�ai ÿ am�e03 � 0, which

provides

1

Em

2
664
a 0 0

0 b�Dy
1 0

0 0 bÿDy
1

3
775
8>><
>>:

~s1

~s2

~s6

9>>=
>>;�

���
2

p
e03

2
664
D

0

0

3
775 � 0, �30�

where Dy
1 � ~D1 cos 4yÿ ~D2 sin 4y, D � si31=s

i
33 ÿ sm31=s

m
33 and Ässs � R Ãsss .

That the matrix � ÃS i ÿ ÃSm� is singular implies that a � 0 and/or b2 ÿ ~D
2

1 ÿ ~D
2

2 � 0. Speci®cally, the

non-trivial solutions of eqn (30) can be found as

�a� when a � 0 �)
�
Ässs , e03

�
� �p, 0, 0, 0�,

�b� when b�Dy
1 � 0 �)

�
Ässs , e03

�
�
� ���

2
p

pD, q, 0, ÿ pa=Em

�
,

�c� when bÿDy
1 � 0 �)

�
Ässs , e03

�
�
� ���

2
p

pD, 0, q, ÿ pa=Em

�
,

�d � when a � 0 and b�Dy
1 � 0 �)

�
Ässs , e03

�
� �p, q, 0, 0�,

�e� when a � 0 and bÿDy
1 � 0 �)

�
Ässs , e03

�
� �p, 0, q, 0�, �31�

p, q being arbitrary constants. Note that, except for the ®rst case that represents the identical plane

strain bulk moduli in both phases, the null spaces of the non-trivial solutions are all two-dimensional. In

either case, the overall moduli of the composite must comply with the connections (16) and (17), which

now take the formsÿ
ÃS
� ÿ ÃSm

�
R

T Ässs � �a� ÿ am �e03 � 0, �32�

"
a�T ÿ

Xm
r�i

cra
T
r

#
R

T Ässs ÿ
"
E �

3 ÿ
Xm
r�i

crE
r
3

#
e03 � 0, �33�

where

ÃS
� ÿ ÃSm � 1

Em

2
664
a� 0 0

0 b� � ~D
�
1

~D
�
2

0 ~D
�
2 b� ÿ ~D

�
1

3
775, a� ÿ am �

���
2

p
2
664
D
�

0

0

3
775, �34�
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and

Z� � Em=E
�, a� � �1ÿ v��Z� ÿ �1ÿ vm �, b� � �1� v��Z� ÿ �1� vm �,

~D
�
1 � D�

1Z
� ÿDm

1 ,
~D
�
2 � D�

2Z
� ÿDm

2 , D
� � s�31=s

�
33 ÿ sm31=s

m
33: �35�

The substitution of (31) into (33) will provide the constraints between the overall moduli of the

composite. Speci®cally, in reference to (31), we ®nd that the connections between the overall moduli of

the composite are:

Case (a):

k� � km � ki, s�31=s
�
33 � cis

i
31=s

i
33 � cms

m
31=s

m
33, �36�

Case (b):

s�31=s
�
33 ÿ cis

i
31=s

i
33 ÿ cms

m
31=s

m
33

E�
3 ÿ ciE

i
3 ÿ cmE

m
3

� ÿ4�1=ki ÿ 1=km �=
ÿ
si31=s

i
33 ÿ sm31=s

m
33

�
, �37�

a�=a � D
�=D �

�
1

k�
ÿ 1

km

���
1

ki
ÿ 1

km

�
, �38�

�
b� � ~D

�
1

�
cos 2y� ~D

�
2 sin 2y � 0, ~D

�
2 cos 2y�

�
b� ÿ ~D

�
1

�
sin 2y � 0, �39�

Case (c): eqns (37), (38) and

ÿ
�
b� � ~D

�
1

�
sin 2y� ~D

�
2 cos 2y � 0, ÿ ~D

�
2 sin 2y�

�
b� ÿ ~D

�
1

�
cos 2y � 0, �40�

Case (d): eqns (36) and (39),

Case (e): eqns (36) and (40).

5. General framework

In Section 2 we focused on the constraints between the overall elastic moduli of ®brous composites, in

which the axial strain e3 can be taken constant. In fact, as long as certain local ®elds are uniform

throughout the medium, the framework remains valid. For example, in a cylindrical electro-elastic

aggregate the axial strain and axial electric ®eld may be taken constant; also in a layered medium the

strains in the transverse direction can be assumed uniform under certain loadings. Apart from these,

uniform eigen®elds, or transformation ®elds may be regarded as particular examples of this kind. In this

section, we propose a general framework for deriving the connections between the overall moduli of

two-phase composites. The formulation is not limited to the context of elasticity. For general purposes,

let us characterize the physical behavior for the phases (designated as 1 and 2) as(
Ui � PiXi � QiY i,

Vi � QT
i Xi � RiY i,

: i � 1, 2, �41�
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where P � PT and R � RT, U and X are �nÿ r� � 1 matrices, and V and Y are r� 1 matrices. Suppose Y

represents the uniform local ®eld quantities throughout the medium, i.e. Y1 � Y2 � Yu � constant

matrix, which means that there exist r uniform ®elds among the n ®eld quantities.

If, in addition, the local variables ful®l certain ®eld equations (for instance, equilibrium equations in

elasticity or divergence equations in dielectric problems) so that the average ®elds over the representative

volume O are equal to the remote applied loading, namely ÅX � X
1

and ÅY � Y
u
, then the overall moduli

are necessarily connected by relations of type

ÅU � P
�
X1 � Q�Yu,

ÅV � Q
�T
X1 � R�Yu, �42�

where

�M � 1

O

�
O

M dO, M � U, V, X, Y: �43�

Now taking an average of the ®eld variables and comparing with (42), in analogy to (7) one ®nds

DP�X1 � DQ�Yu � c
�
DPhXi � DQYu

	
,

DQ�TX1 � DR�Yu � c
�
DQhXi � DRYu

	
, �44�

where

DP� � P� ÿ P1, DQ� � Q� ÿ Q1, DR� � R� ÿ R1,

DP � P2 ÿ P1, DQ � Q2 ÿ Q1, DR � R2 ÿ R1,

c � O2=O1, O � O1 � O2, hXi � 1

O

�
O2

X dO: �45�

Since X1 and Yu can be prescribed arbitrarily, by letting Yu � 0 or X1 � 0 separately, we ®nd the

connections between the overall moduli

DQ� � DP��DP�ÿ1DQ,
DR� ÿ cDR � DQT�DP�ÿ1�DP� ÿ cDP��DP�ÿ1DQ, �46�

provided that DP is invertible. Again, when DP is singular the approach outlined in Section 3 can be

employed.

6. Closure

For a cylindrical body in which the material properties can be represented by the characterization

formulae (4), we show that its e�ective moduli follow the constraints similar to those for two-phase

®brous media (Hill, 1964). In fact, it can be shown that (4) is the most general characterization for

which such connections can be established. Eqn (4) permits us to characterize a domain that is more

general than a two- or multi-phase medium or even a pointwise varying material, but in principle they

cannot depict a general three-phase material. However, for a three-phase material in which the third

phase is itself a composite of the ®rst two materials, or the family of three-phase materials that could be

characterized by (4), then the results (9) and (10) still hold. The connections provide relationships
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between the moduli in the axial direction and those relating to the o�-axial direction. In general at most

six conditions can be obtained and thus, only 15 out of a total of 21 constants are independent. In the

case that the matrix D ÃS is singular, additional connections between the e�ective constants may be

found. We mention, however, that the exact result of the bulk modulus found by Hill (1963) for

composites with identical shear rigidities, which corresponds to the case that D ÃS is singular, cannot be

derived from our connections, since the present connections provide exact relations between the axial

moduli and o�-axial moduli, while Hill's result determines a unique solution to bulk modulus in the

transverse direction. In plane elasticity, Zheng and Hwang (1996, 1997) recently found that the e�ective

tensors for a medium containing cavities or inhomogeneities are independent of some phase material

parameters. In a companion work, we (Zheng and Chen, 1999) show that the reduced dependence of the

phase moduli and connections obtained in the present work are complementary to each other. Thus, it

is likely that the e�ective constants in the axial direction could be irrelevant to some of the phase

parameters in the transverse plane. Finally, we remark that, in addition to the various physical contexts

mentioned in Section 5, the present framework can be applied to polycrystals (see, for example,

Schulgasser 1987; Chen, 1994).
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